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Abstract 

In this paper we consider how to evaluate whether a de-
sign or other artifact is creative. Creativity and its eval-
uation have been studied as a social process, a creative 
arts practice, and as a design process with guidelines for 
people to judge creativity.  However, there are few ap-
proaches that seek to evaluate creativity computational-
ly. In prior work we presented novelty, value, and sur-
prise as a set of necessary conditions when identifying 
creative designs. In this paper we focus on the least 
studied of these – surprise. Surprise occurs when expec-
tations are violated, suggesting that there is a temporal 
component when evaluating how surprising an artifact 
is. This paper presents an approach to quantifying sur-
prise by projecting into the future. We illustrate this ap-
proach on a database of automobile designs, and we 
point out several directions for future research in as-
sessing surprising and creativity generally. 

 Evaluating Creativity and Surprise 
As we develop partially and fully automated approaches to 
computational creativity, the boundary between human 
creativity and computer creativity blurs. We are interested 
in approaches to evaluating creativity that make no as-
sumptions about whether the creative entity is a person, a 
computer, or a collective intelligence of human and com-
putational entities. In short, we want a test for creativity 
that is not biased by the form of the entity that is doing the 
creating (Maher and Fisher 2012), but the test should be 
flexible enough to allow for many forms of creative output. 
Ultimately, such tests will imbue artificial agents with an 
ability to assess their own designs and will inform compu-
tational models of creative reasoning. Such tests will also 
inform the design of cognitive assistants that collaborate 
with humans in sophisticated, socially-intelligent systems. 
 Evaluating creativity by the characteristics of its results 
has a long history, including contributions from psycholo-
gy, engineering, education, and design. Most descriptions 
of creative designs include novelty (sufficiently different 
from all other designs) and value (utilitarian and/or aesthet-
ic) as essential characteristics of a creative artifact 
(Csikszenmihalyi & Wolfe, 2000; Amabile, 1996; Runco, 
2007; Boden, 2003; Wiggins, 2006; Cropley & Cropley, 
2005; Besemer & O’Quin, 1987; Horn & Salvendy, 2003; 

Goldenberg & Mazursky, 2002; Oman and Tumer, 2009; 
Shah, Smith, & Vargas-Hernandez, 2003).  
 Surprise is an aspect of creative design that is rarely 
given attention, even though we believe that it is distinct 
from novelty and value: a design can be both novel and 
valuable, but not be surprising. It may be tempting to think 
that surprise simply stems directly from its “novelty” or 
difference relative to the set of existing and known arti-
facts, but we believe that while surprise is related to novel-
ty, it is distinct from novelty as that term is generally con-
strued. In particular, surprise stems from a violation of 
expectations, and thus surprise can be regarded as “novel-
ty” (or sufficient difference) in a space of projected or ex-
pected designs, rather than in a space of existing designs.  
 In earlier work, Maher and Fisher (2012) presented nov-
elty, value, and surprise as essential and distinct character-
istics of a creative design. They also forwarded computa-
tional models based on clustering algorithms, which were 
nascent steps towards automating the recognition of crea-
tive designs. This paper takes a closer look at surprise, add-
ing an explicit temporal component to the identification of 
surprising designs. This temporal component enables a 
system to make projections about what designs will be 
expected in the future, so that a system can subsequently 
assess a new design’s differences from expectations, and 
therefore judge whether a new design deviates sufficiently 
from expectations to be surprising.  

AI Approaches for Assessing Surprise 
There is little work on assessing surprise in computational 
circles; but there has been some, which we survey here. 
 Horvitz et al (2005) develop a computational model of 
surprise for traffic forecasting. In this model, they generate 
probabilistic dependencies among variables, for example 
linking weather to traffic status. They assume that when an 
event has less than 2% probability of occurring, it is 
marked as surprising. They temporally organize the data, 
grouping incidents into 15-minute intervals. Surprising 
events in the past are collected in a case library of surprises 
that is used to identify when a surprising event has oc-
curred. Though related, the concept of rarity as an identifi-
er of something surprising is not the same as difference 
(“novelty”) as an interpretation of surprise – for example, 
perhaps the rare event differs on only one or two dimen-
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sions from other events, and it is these slight differences 
that make the event rare, and thus surprising.  
 An important characteristic of the Horvitz et al model is 
that it makes time explicit, by grouping events into tem-
poral intervals. 
 A possible limitation of considering rarity as an interpre-
tation of surprise is that as rare events recur, as they are apt 
to do, many observers would regard them as less surpris-
ing. So conditioning surprise by prior precedent might be a 
very desirable addition to the model. Indeed, Rissland 
(2009) advances a case-based approach to reasoning about 
rare and transformative legal cases, where the first appear-
ance of a rare case is surprising and transformative, but 
subsequent appearances of similar, but still rare events, are 
neither transformative, nor surprising.  

While Rissland’s research is not concerned with compu-
tational assessment of surprise per se, it recognizes that 
there are certain legal precedents that radically alter the 
legal landscape. Rissland calls such precedents ‘black 
swans,’ which are rare, perhaps only differing from past 
legal cases in “small” ways, but they are surprising none-
theless. Importantly, as cases that are similar to the black 
swan surface, these ‘grey cygnets’ (as she calls them) are 
covered by the earlier black swan precedent; a grey cygnet 
is not transformative and not surprising. The general lesson 
for approaches to assessing surprise is that rarity may not 
be enough, because over any sufficient time span the recur-
rence of rare events is quite likely! But of course, an ob-
server’s memory may be limited to a horizon, so that when 
time intervals are bounded by these horizons, rarity may in 
fact be a sufficient basis for assessing surprise. 
 Itti and Baldi (2004) describe a model of surprising fea-
tures in image data using a priori and posterior probabili-
ties. Given a user dependent model M of some data, there 
is a P(M) describing the probability distribution. P(M|D) is 
the probability distribution conditioned on data. Surprise is 
modeled as the distance d between the prior, P(M), and 
posterior P(M|D) probabilities. In this model, time is not an 
explicit attribute or dimension of the data. There are only 
two times: before and now.   
 Ranasinghe and Shen (2008) develop a model of sur-
prise as integral to developmental robots. In this model, 
surprise is used to set goals for learning in an unknown 
environment. The world is modeled as a set of rules, where 
each rule has the form: Condition → Action → Predic-
tions. A condition is modeled as: Feature → Operator → 
Value. For example, a condition can be feature1 > value1 
where greater than is the operator. A prediction is modeled 
as: Feature → Operator. For example, a prediction can be 
feature1 > where it is expected that feature1 will increase 
after the action is performed. Comparisons can detect the 
presence or absence of a feature, and the change in the size 
of a feature (<, ≤, =, ≥, >). If an observed feature does not 
match its predicted value, then the system recognizes sur-
prise. This model does not make any explicit reference to 
time and uses surprise as a flag to update the rule base. 

 Maher and Fisher (2012) have used clustering algo-
rithms to compare a new design to existing designs, to 
identify when a design is novel, valuable, and surprising. 
The clustering model uses distance (e.g., Euclidean dis-
tance) to assess novelty and value of product designs (e.g., 
laptops) that are represented by vectors of attributes (e.g., 
display area, amount of memory, cpu speed). In this ap-
proach, a design is considered surprising when it is so dif-
ferent from existing designs that it forms its own new clus-
ter. This typically happens when the new design makes 
explicit an attribute that was not previously explicit, be-
cause all previous designs had the same value for that at-
tribute. Maher and Fisher use the example of the Bloom 
laptop, which has a detachable keyboard (i.e., detachable 
keyboard = TRUE), where all previous laptop designs had 
value FALSE along what was a previously implicit, unrec-
ognized attribute. Thus, like one of Rissland’s black swans, 
the Bloom transformed the design space.  
 In Maher and Fisher, the established clusters of design 
are effectively representing the expectation that the next 
new design will be associated with one of the clusters of 
existing designs, and when a new design forms its own 
cluster it is surprising and changes our expectations for the 
next generation of new designs.  
 Maher and Fisher (2012) focused on evaluation of crea-
tivity on the part of an observer, not an active designer. 
Brown (2012) investigates many aspects of surprise in cre-
ative design, such as who gets surprised: the designer or 
the person experiencing or evaluating the design. Brown 
(2012) also presents a framework for understanding sur-
prise in creative design by characterizing different types of 
expectations, active, active knowledge, and not active 
knowledge, as alternative situations in which expectations 
can be violated in exploratory and transformative design. 
 To varying extents, many of the computational ap-
proaches above model surprise as a deviation from expec-
tation, where the expectation is an expected value that is 
estimated from data distributions or a prediction made by 
simulating a rule-based model. In these, however, there is 
no explicit representation of time as a continuum, nor ex-
plicit concern with projecting into the future.  

Recognizing Surprising Designs 
Our approach to projecting designs into the future assumes 
that each product design is represented by a vector of ordi-
nal attributes (aka variables). For each attribute, a mathe-
matical function of time can be fit to the attribute values of 
existing (past) designs, showing how the attribute’s values 
have varied with time in the past. This best fitting function, 
obtained through a process of regression, can be used to 
predict how the attribute’s values will change in the future 
as well. Our approach to projecting into the future is in-
spired by earlier work by Frey and Fisher (1999) that was 
concerned with projecting machine learning performance 
curves into the future (thereby allowing cost benefit anal-
yses of collecting more data for purposes of improving 
prediction accuracy), and it was not concerned with crea-
tivity and surprise assessment per se. While Frey and Fish-
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er used a variety of functional forms, most notably power 
functions, as well as linear, logarithmic, and exponential, 
we have thus far only used linear functions (i.e., univariate 
linear regression) for projecting designs into the future for 
purposes of surprise assessment. 
 In this paper we focus on regression models for recog-
nizing a surprising design: a regression analysis of the at-
tributes of existing designs against a temporal dimension is 
used to predict the ”next” value of the attributes. The dis-
tance from the observed value to the predicted value identi-
fies a surprising attribute-value pair.  
 We illustrate our use of regression models for identify-
ing surprising designs in an automobile design dataset, 
which is composed of 572 cars that were produced be-
tween 1878 and 2009 (Dowlen, 2012). Each car is de-
scribed by manufacturer, model, type, year, and nine nu-
merically-valued attributes related to the mechanical de-
sign of the car. In this dataset only 190 entries contain val-
ues for all nine attributes. These complete entries all occur 
after 1934 and are concentrated between 1966 and 1994. A 
summary of the number of designs and the number of at-
tributes in our dataset is shown in Table 1. 
 
Table 1: List of the mechanical design attributes and the 
number of automobile design records with an entry for 
each of the nine attributes in our dataset. 

 
 
  
 
 
 
 
 
 
 
 

 
 A variety of linear regression models are considered. 
The first model uses linear regression over the entire time 
period of the design data and fits a line to each attribute as 
a function of time. The results for one attribute, maximum 
speed, are shown in Figure 1. This analysis identifies the 
outliers, and therefore potentially surprising designs. For 
example, the Ferrari 250LM had a surprising maximum 
speed in 1964, and the Bugati Type 41 Royale has a sur-
prising engine size (another attribute, and another regres-
sion analysis) in 1995. 
 This first model works well for identifying outliers 
across a time period but does not identify trendsetters (or 
‘black swans’ as Rissland might call them) since data 
points that occurred later in the timeline were included in 
the regression analysis when evaluating the surprise of a 
design. A trendsetter is a surprising design that changes the 
expectations for designs in the future, and is not simply an 
outlier for all time. In other words, using the entire time 
line to identify surprising automobile designs does not help 
us identify those designs that influenced future designers. 

A design that is an outlier in its own time, but inspires fu-
ture generations of designers to do something similar can 
only be found if we don’t use designs which came out after 
the model being measured in the training data. 
 

Figure 1. Regression analysis for maximum speed over the 
entire time period of car design data. 
 
 Thus, we considered a second strategy that performs a 
linear regression only on previously created designs and 
measures surprise of a new design as the distance from that 
design’s attribute value to the projection of the line at the 
year of the design in question. This second regression 
strategy, where the time period used to fit the line for a 
single attribute was limited to the time before each design 
was released (see Figure 2), found roughly the same sur-
prising designs as the first model (over the entire time pe-
riod) for most attributes, but there were two exceptions: 
torque displacement and maximum speed.  In these excep-
tions, outliers earlier in time were sufficiently extreme so 
as to significantly move the entire regression line from 
before the early outliers to after, whereas in other cases the 
rough form of the regression lines created over time did not 
change much. 

Figure 2: Using strategy 2, linear models are constructed 
using all previous-year designs. The circles show the pre-
dicted (or projected) values for EACH year from the indi-
vidual regression lines; the dots show actual values. We 
show three sample regression lines, each ending at the year 
(circle) it is intended to predict, but there is actually one 
regression line for each year. 
 

Attribute Number of Designs 
Engine Displacement 438 
Bore Diameter 407 
Stroke Length 407 
Torque Force 236 
Torque Displacement 235 
Weight 356 
Frontal Area 337 
Maximum Speed 345 
Acceleration 290 
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 When training this second model, designs from every 
previous year were weighted equally for predicting future 
designs.  Thus, outliers in the beginning of the dataset per-
petually shifted the model and skewed the surprise meas-
urements for all subsequent designs. And why shouldn’t 
they – these early designs correspond roughly to what 
Rissland called black swans, which understandably dimin-
ish the surprise value of subsequent ‘grey cygnets’. How-
ever, it is also the case that when using model 2, taking 
into account all past history, that a large mass of ‘bland’ 
designs earlier can exaggerate the perceived surprise of a 
design, even when that design is in the midst of a spurt of 
like designs. 
    These observations inspired a third linear regression 
strategy that makes predictions (or sets expectations) by 
only including designs within a specified time range before 
the designs being measured. We use a sliding window, 
rather than disjoint bins. In either case though, limited time 
intervals can mimic perceptions of surprise when the ob-
server has a limited memory, only remembering up to a 
myopic horizon into the past.  
 The window (aka interval) size used for the cars dataset 
was ten years. This number was chosen because histo-
grams of the data revealed that all ten-year periods after 
1934 contained at least one design with all nine attributes 
while smaller periods were very sparsely populated in the 
1950s. Larger window sizes converged to the second re-
gression model as window size increased.  
 In general, the size of windows has a large influence on 
the results. Though we won’t delve into the results of this 
final strategy here, its sensitivity has appeal. In fact, rela-
tive to our longer-term goal of modeling human surprise, 
this sensitivity to window size may map nicely on to dif-
ferent perceptions by people with different experiences. An 
older adult may have a very different surprise reaction than 
a young person, depending on past experience. In general, 
the selection of an appropriate range of years for the third 
regression model can be correlated with typical periods of 
time over which a person can remember. That is, if we 
want to compare our computational model of surprise with 
human expectations, we should use time intervals that are 
meaningful to people rather than based on the distribution 
of data. People will be surprised when expectations based 
on a time period relevant to their personal knowledge and 
experience of a series of designs is not met, rather than on 
the entire time period for all designs. 

Directions for Further Research  
This paper presents an approach to evaluating whether a 
design is surprising, and therefore creative, by including a 
temporal analysis of the conceptual space of existing de-
signs and using regression analysis projected into the fu-
ture to identify surprising designs. There are a number of 
directions we plan to follow. 
 1. We want to further develop the regression models, 
and in particular move beyond linear regression, to include 
other functional forms such as polynomial, power, and 
logarithmic. After all, a design might be regarded as sur-

prising if we used linear regression to project into the fu-
ture, but not at all surprising if we used a higher-order pol-
ynomial regression into the future! Identifying means of 
distinguishing when one functional form over another is 
most appropriate for regression will be a key challenge. 
 2. We want to move beyond our current univariate as-
sessments of surprise through univariate regression, to ho-
listic, multivariate model assessments of surprise through 
multivariate regression. We can apply multivariate regres-
sion methods to designs as a function of time, or combine 
our earlier work on clustering approaches (Maher and 
Fisher, 2012) with our regression approaches, perhaps by 
performing multivariate regression over multivariate sum-
maries of design clusters (e.g., centroids). 
 3. We have thus far been investigating novelty and value 
(Maher and Fisher, 2012) and surprise as decoupled char-
acteristics of creativity, but an important next step is to 
consider how measures of these three characteristics can be 
integrated into a single holistic measure of creativity, prob-
ably parameterized to account for individual differences 
among observers. 
 4. Assessments of creativity are conditioned on individ-
ual experiences; such individual differences in measures of 
surprise, novelty, and value are critical – surprise to one 
person is hardly so to another. We made a barest beginning 
of this study in Maher and Fisher (2012), where we viewed 
clustering as the means by which an agent organized its 
knowledge base, and against which creativity would be 
judged. The methods for regression that we have presented 
in this paper will allow us to build in an “imagining” ca-
pacity to an agent, adding expectations for designs that do 
not yet exist to the knowledge base of agents responsible 
for assessing creativity. 
 5. In all the variants that we plan to explore, we want to 
match the results of our models in identifying surprising 
designs to human judgments of surprise, and of course to 
assessments of creativity (novelty, value, surprise) of the 
designs, generally. 
 6. Finally, our work to date assumes that designs are 
represented as attribute-value vectors; these propositional 
representations are clustered in Maher and Fisher (2012), 
or time-based regression is used in this paper. We want to 
move to relational models, however, perhaps first-order 
representations and richer representations still. Relational 
representations would likely be required in Rissland’s legal 
domain, if in fact that domain were formalized.  
 A domain that we find very attractive for exploring rela-
tional representations is the domain of computer programs, 
which follow a formal representation and for which a 
number of well established tools exist for evaluating novel-
ty, value, and surprise. For example, consider that tools for 
identifying plagiarism in computer programs measure 
“deep” similarity between programs, and can be adapted as 
novelty detectors), and for assessing surprise as well.  
 An ability to measure creativity of “generic” computer 
programs will allow us to move into virtually any (com-
putable) domain that we want. For example, consider 
mathematical reasoning in students. In an elementary 
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course, we can imagine seeing a large number of programs 
that are designed to compute the variance of data values, as 
composed of two sequential loops – the first to compute 
the mean of the data, and the subsequent loop to compute 
the variance given the mean. These programs will be very 
similar at a deep level. Imagine then seeing a program that 
computes the variance (and mean) with ONE loop, relying 
on a mathematical “simplification.” These are the kinds of 
assessments of creativity that we can expect in more so-
phisticated relational domains, all enabled by capabilities 
to assess computer programs. 
 
Acknowledgements: We thank our anonymous reviewers 
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